图片 10

应用马克斯Compute访问TableStore(OTS) 简明手册

  1. 无中生有造数据

a

set
odps.sql.planner.mode=lot;

UDTF的优势:

其他改进

MaxCompute 与 TableStore
是两个独立的大数据计算以及大数据存储服务,所以两者之间的网络必须保证连通性。
对于 MaxCompute 公共云服务访问 TableStore 存储,推荐使用 TableStore
私网
地址,例如

图片 1

例如:

# this url is for odpscmd update

  • 注一,USING
    后面的字符串,在后台是直接起的子进程来调起命令,没有起shell,所以shell的某些语法,如输入输出重定向,管道等是不支持的。如果用户需要可以以
    shell 作为命令,真正的命令作为数据输入,参考“无中生有造数据”的例子;
  • 注二,JAVA 和 PYTHON 的实际路径,可以从JAVA_HOME 和 PYTHON_HOME
    环境变量中得到作业;

SELECT * from mytable1 a LEFT SEMI JOIN mytable2 b on a.id=b.id;

// 统计编号 4 以下的车辆在时间戳 1469171387
以前的平均速度和平均油耗

原标题:MaxCompute重装上阵 第五弹 – SELECT TRANSFOR

等效于

2.打包之后可以上传到
MaxCompute,其中打包这里有需要注意的地方,File->Project
Structure->Artifacts, 填写好 Name 和 Output Directory 后,要点击
+ 选择输出模块,打包后通过 ODPS Project Explorer
来上传资源、创建函数,然后就可以在SQL中调用。

此文中采用MaxCompute Studio作展示,首先,安装MaxCompute
Studio,导入测试MaxCompute项目,创建工程,建立一个新的MaxCompute脚本文件, 如下

实际上,VALUES表并不限于在INSERT语句中使用,任何DML语句都可以使用。

比如下面就是一个简单的 UDF
定义,只是简单的将两个字符串连接。 MaxCompute
支持更复杂的UDF,包括自定义窗口执行逻辑等,详细请参考MaxCompute Studio-开发
UDF。

SELECT TRANSFORM 的优势:

返回左表中的数据,当join条件不成立,也就是mytable1中某行的id在mytable2的所有id中没有出现过,此行就保留在结果集中

STORED BY ‘com.aliyun.odps.TableStoreStorageHandler’
— (1)

上述功能可以使用SELECT TRANSFORM来实现

SELECT*FROMsrcUNIONALLSELECT*FROMsrc;

5.创建一张 MaxCompute 的数据表关联到 TableStore
的某一张表。

摘要:
MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台,
尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。
MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

SELECTkey,max(value)FROMsrc tWHEREvalue>0GROUPBYkeyHAVINGsum(value)
>100ORDERBYkeyLIMIT100;

关系数据库已经存在半个世纪,有非常广泛的使用场景,但是在快速迭代的互联网领域其扩展性和
schema 灵活性被诟病颇多,因此类似 TableStore/BigTable/HBase
等强调扩展性和灵活性的NoSQL数据库逐步流行起来,这些 NoSQL 数据库只提供
API 接口,不提供 SQL 访问,这就导致很多熟悉 SQL
但是不喜欢写代码的用户没法很舒服的使用此类NoSQL数据库。基于此,表格存储开发团队联合
MaxCompute(下文中 ODPS 与 MaxCompute 同义)团队打通了 ODPS-SQL
访问表格存储的路径,这样一个只懂 SQL
的用户也可以愉快的访问表格存储里面的大量数据了。

上面的语句造出一份有50行的数据表,值是从1到50;
测试时候的数据就可以方便造出来了。功能看似简单,但以前是odps的一个痛点,没有方便的办法造数据,就不方便测试以及初学者的学习和探索。当然这也可以通过udtf来实现,但是需要复杂的流程:进入ide->写udtf->打包->add
jar/python->create function->执行->drop function->drop
resource。

使用CTE的方式重写以上语句

data_size_confirm=100.0

第一弹 – 善用MaxCompute编译器的错误和警告

场景3

https_check=true

  1. Using
    子句指定的是要执行的命令,而非资源列表,这一点和大多数的MaxCompute
    SQL语法不一样,这么做是为了和hive的语法保持兼容。

  2. 输入从stdin传入,输出从stdout传出;

  3. 可以配置分隔符,默认使用 \t 分隔列,用换行分隔行;

  4. 可以自定义reader/writer,但用内置的reader/writer会快很多

  5. 使用自定义的资源(脚本文件,数据文件等),可以使用 set
    odps.sql.session.resources=foo.sh,bar.txt;
    来指定。可以指定多个resource文件,用逗号隔开(因此不允许resource名字中包含逗号和分号)。此外我们还提供了resources子句,可以在using
    子句后面指定 resources ‘foo.sh’, ‘bar.txt’
    来指定资源,两种方式是等价的(参考“用odps跑测试”的例子);

SELECT*frommytable1whereexists(select*frommytable2whereid=
mytable1.id);`

WITH SERDEPROPERTIES ( — (2)

图片 2

SELECT*fromsales_detailwheredsin(selectdtfromsales_date);

 

责任编辑:

另外在处理分区表的时候,也会有特殊处理

 

或者用map,reduce的关键字会让逻辑显得清楚一些

SEMI JOIN

end_point=

第四弹 – CTE,VALUES,SEMIJOIN

图片 3

set odps.sql.type.system.odps2=true; –是支持表格存储的binary类型

理论上OpenMR的模型都可以映射到上面的计算过程。注意,使用map,reduce,select
transform这几个语法其实语义是一样的,用哪个关键字,哪种写法,不影响直接过程和结果。

执行的效果相当于

 

上面的语句仅仅是把value原样输出,但是熟悉awk的用户,从此过上了写awk脚本不写sql的日子

FROMsrc tWHEREvalue >0GROUPBYkeyHAVING sum(value) >100SELECTkey,
max(value)ORDERBYkeyLIMIT100;

  • 实例名称:vehicle-test
  • 数据表名称:vehicle_track
  • 主键信息:vid(int); gt (int)
  • 访问域名:https://vehicle-test.cn-shanghai.ots-internal.aliyuncs.com

select transform (key, value) using “perl -e ‘while($input =
<STDIN>){print $input;}'” from src;

书写顺序和执行顺序一致,就不容易混淆了。这样有一个额外的好处,在MaxCompute
Studio中写SQL语句的时候,会有智能提示的功能,如果是SELECT在前,书写select列表的表达式的时候,因为FROM还没有写,MaxCompute
Studio没办法知道可能访问那些列,也就不能做提示。如下

project_name=上面申请的ODPS工程名

SELECT TRANSFORM 介绍

注1

select vid,count(*),avg(speed),avg(oil_consumption) from
ots_vehicle_track where vid
<4 and gt<1469171387  group by
vid;

MaxCompute基于ODPS2.0新一代的SQL引擎,显著提升了SQL语言编译过程的易用性与语言的表达能力。我们在此推出MaxCompute(ODPS2.0)重装上阵系列文章

返回左表中的数据,当join条件成立,也就是mytable1中某行的id在mytable2的所有id中出现过,此行就保留在结果集中

TableStore数据类型

MaxCompute数据类型

string

string

binary

blob

int

bigint

double

double

  1. awk 用户会很喜欢这个功能

可以看到,a对应的子查询只需要写一次,在后面重用,CTE的WITH字句中可以指定多个子查询,像使用变量一样在整个语句中反复重用。除了重用外,也不必再反复嵌套了。

update_url=

MaxCompute基于ODPS2.0的SQL引擎,提供了SELECT
TRANSFORM功能,可以明显简化对脚本代码的引用,与此同时,也提高了性能!我们推荐您尽量使用SELECT
TRANSFORM。

上次向您介绍了复杂类型,从本篇开始,向您介绍MaxCompute在SQL语言DML方面的改进

关联的数据表信息如下:

小结

MaxCompute支持以执行顺序书写查询语句,例如上面的语句可以写为

摘要: 大数据计算服务 MaxCompute
能够提供强大的分析能力,而分布式 NoSQL
数据库表格存储在行级别上的实时更新和可覆盖性写入等特性,相对于
MaxCompute 内置表 append-only 批量操作,提供了一个很好的补充。

Select
transform允许sql用户指定在服务器上执行一句shell命令,将上游数据各字段用tab分隔,每条记录一行,逐行输入shell命令的stdin,并从stdout读取数据作为输出,送到下游。Shell命令的本质是调用Unix的一些utility,因此可以启动其他的脚本解释器。包括python,java,php,awk,ruby等。

SELECTDISTINCT*FROM(SELECT*FROMsrc1UNIONALLSELECT*FROMsrc2) t;

小提示:由于 MaxCompute 在 2.0
版本的计算框架才能支持直接访问 TableStore
数据,该版本还在灰度上线中,目前还需要 申请MaxCompute
2.0试用
,具体开通使用方法请参见 如何申请试用MaxCompute
2.0。

目前odps select transform完全兼容了hive的语法、功能和行为,包括
input/output row format 以及
reader/writer。Hive上的脚本,大部分可以直接拿来运行,部分脚本只需要经过少许改动即可运行。另外我们很多功能都用比hive更高执行效率的语言
(C++) 重构,用以优化性能。

场景2

分布式NoSQL数据存储服务,无缝支持单表PB级数据及百万级访问并发,弹性资源,按量计费,对数据高频的增、删、改支持的很好,保证单行数据读写的强一致性。

图片 4

编译此脚本,可以观察执行计划如下

网络连通性

  1. 子进程和父进程是两个进程,而UDTF是单线程的,如果计算占比比较高,数据吞吐量比较小,可以利用服务器的多核特性
  2. 数据的传输通过更底层的系统调用来读写,效率比java高
  3. SELECT
    TRANSFORM支持的某些工具,如awk,是natvie代码实现的,和java相比理论上可能会有性能优势。

SELECT*frommytable1whereidin(selectidfrommytable2);

access_id=ODPS-AccessId

  1. 用odps跑测试

有的时候表的列很多,准备数据的时候希望只插入部分列的数据,此时可以用插入列表功能

1.下载并安装大数据计算服务客户端

或者

因为WHERE中包含了OR,导致无法转换为SEMI JOIN,会单独启动作业执行子查询

首先,准备好一个 MaxCompute 的工程,工程创建指导文档,准备好AccessId和AccessKey备用,为了区别其他产品的AccessId和AccessKey,后面我们称之为ODPS-AccessId,ODPS-AccessKey。并在RAM中授权
MaxCompute 访问 TableStore 的权限,授权方式请参考MaxCompute访问TableStore数据——授权

MaxCompute(原ODPS)是阿里云自主研发的具有业界领先水平的分布式大数据处理平台,
尤其在集团内部得到广泛应用,支撑了多个BU的核心业务。
MaxCompute除了持续优化性能外,也致力于提升SQL语言的用户体验和表达能力,提高广大ODPS开发者的生产力。

支持IMPLICIT JOIN

3.打开bin/odpscmd,输入

  1. 可以串联着用,使用 distribute by和 sort by对输入数据做预处理

例如:

本篇文章就以一个小白用户的身份体验如何使用
MaxCompute-SQL 查询表格存储里面的数据,以及如何开发自定义逻辑(User
Defined Function, UDF)来处理用户特定的数据格式。

图片 5

LEFT ANTI JOIN

然后,准备好一个表格存储的实例以及一张数据表,表格存储实例管理,准备好实例名、EndPoint,为了区别其他产品的AccessId和AccessKey,后面我们称之为TableStore-InstanceName,TableStore-EndPoint。

图片 6

标注

‘tablestore.table.name’=’vehicle_track’ —
(4)

  • SELECT TRANSFORM。

  • 场景1

  • 我的系统要迁移到MaxCompute平台上,系统中原来有很多功能是使用脚本来完成的,包括python,shell,ruby等脚本。
    要迁移到MaxCompute上,我需要把这些脚本全部都改造成UDF/UDAF/UDTF。改造过程不仅需要耗费时间人力,还需要做一遍又一遍的测试,从而保证改造成的udf和原来的脚本在逻辑上是等价的。我希望能有更简单的迁移方式。
  • 场景2
  • SQL比较擅长的是集合操作,而我需要做的事情要对一条数据做更多的精细的计算,现有的内置函数不能方便的实现我想要的功能,而UDF的框架不够灵活,并且Java/Python我都不太熟悉。相比之下我更擅长写脚本。我就希望能够写一个脚本,数据全都输入到我的脚本里来,我自己来做各种计算,然后把结果输出。而MaxCompute平台就负责帮我把数据做好切分,让我的脚本能够分布式执行,负责数据的输入表和输出表的管理,负责JOIN,UNION等关系操作就好了。

VALUES

DROP TABLE IF EXISTS
ots_vehicle_track;

第二弹 – 新的基本数据类型与内建函数

还有一种VALUES表的特殊形式

speed double,

图片 7

例如:

6.执行ODPS-SQL

该命令兼容Hive的Transform功能,可以参考Hive的文档。一些需要注意的点如下:

1

(

应用场景举例

创建一个新的文件,如下:

2.下载解压,将conf/odps_config.ini
的内容修改为:

性能

图片 8

CREATE EXTERNAL TABLE IF NOT
EXISTS
ots_vehicle_track

上面用的是perl。这其实不仅仅是语言支持的扩展,一些简单的功能,awk,
python, perl, shell
都支持直接在命令里面写脚本,不需要写脚本文件,上传资源等过程,开发过程更简单。另外,由于目前我们计算集群上没有php和ruby,所以这两种脚本不支持。

图片 9

 

图片 10

MaxCompute大大扩充了DML语句的支持,在易用性,兼容性和性能方面,可以更好的满足您的需求。对于SQL比较熟悉的专家会发现,上述功能大部分是标准的SQL支持的功能。MaxCompute会持续提升与标准SQL和业界常用产品的兼容性。

distance double
,

  1. UDTF是有类型,而Transform的子进程基于stdin/stdout传输数据,所有数据都当做string处理,因此transform多了一步类型转换;
  2. Transform数据传输依赖于操作系统的管道,而目前管道的buffer仅有4KB,且不能设置,
    transform读/写 空/满 的pipe会导致进程被挂起;
  3. UDTF的常量参数可以不用传输,而Transform没办法利用这个优化。

MaxCompute采用基于ODPS2.0的SQL引擎,对DML进行了大幅扩充,提高了易用性和兼容性,基本解决了上述问题。

 

本文为云栖社区原创内容,未经允许不得转载。返回搜狐,查看更多

场景4

  • com.aliyun.odps.TableStoreStorageHandler 是 MaxCompute
    内置的处理 TableStore 数据的 StorageHandler, 定义了 MaxCompute 和
    TableStore 的交互,相关逻辑由 MaxCompute 实现。
  • SERDEPROPERITES
    可以理解成提供参数选项的接口,在使用 TableStoreStorageHandler
    时,有两个必须指定的选项,分别是下面介绍的
    tablestore.columns.mapping 和 tablestore.table.name。
    更多的可选选项将在后面其他例子中提及。
  • tablestore.columns.mapping
    选项:必需选项,用来描述对需要 MaxCompute 将访问的 TableStore
    表的列,包括主键和属性列。 这其中以 : 打头的用来表示 TableStore
    主键,例如这个例子中的 :vid:gt。 其他的均为属性列。
    TableStore支持最少1个,最多4个主键,主键类型为 bigint 或
    string,其中第一个主键为分区键。 在指定映射的时候,用户必须提供指定
    TableStore 表的
    所有主键,对于属性列则没有必要全部提供,可以只提供需要通过
    MaxCompute 来访问的属性列。
  • tablestore.table.name:需要访问的 TableStore 表名。
    如果指定的 TableStore 表名错误(不存在),则会报错,MaxCompute
    不会主动去创建 TableStore 表。
  • LOCATION 用来指定访问的 TableStore 的实例信息,包括
    instance 名字,endpoint 等。 
  • 数据格式对应,MaxCompute 与 TableStore
    的数据格式对应如下: