图片 12

笔者校在人工微结构物理与素材研商中获得突破

光纤是一种非常重要而独特的波导,在通信、传感、生物医疗等诸多领域都有着不可替代的作用。然而在光纤传输中存在着一些根本性的问题:
一方面,由于光纤在拉制过程中不可避免地出现材料不均匀,使得光子在传输过程中会产生由光散射导致的损耗。另一方面,光纤中传播的能量有上限,如果太高会产生由非线性效应导致的背向散射,限制了光纤传输的能量。此外,光纤断面和衔接处的反射也一直存在,而所有的反射信号都可能影响发射光源的正常工作。如果能从根本上去除光纤的反射通道,设计出单向光纤,便可以在原理上一劳永逸地解决很多问题。

原标题:【物理世界】这些物理现象颠覆了我的世界!

我校固体微结构物理国家重点实验室、现代工程与应用科学学院材料科学与工程系、人工微结构科学与技术协同创新中心的卢明辉、刘晓平和陈延峰教授课题组在人工微结构物理与材料的研究中取得突破,他们首次在理论上提出并在实验上实现了声拓扑绝缘体及其量子自旋霍尔效应。相关成果以“Acoustic
topological insulator and robust one-way sound
transport”为题于2016年8月29日发表于《自然•物理》 [C. He et al., Nature
Physics,doi:10.1038/nphys3867]。

最近,中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员陆凌和研究生高浩哲,与清华大学高等研究院研究员汪忠紧密合作,在磁性三维光子晶体中设计出了单向光子通道,即单向光纤的理论雏形,如动图所示。与传统光纤不同,在单向光纤中,光信号可以无散射地绕过任意形状的杂质或缺陷。

这些反直觉的物理现象展现了前所未有的视野,那样的美,无法言语。

拓扑绝缘体是近些年来引起人们极大关注的热点,其电子能带结构的拓扑性质使其具有独特的输运特征:如体相绝缘而边界为金属态、自旋相关的电子单向传播、背散射抑制的鲁棒性等,这类材料可望在自旋电子学、热电以及量子信息领域获得应用。最近几年来,玻色子的拓扑态也引起了人们的极大关注,例如对于光子,人们相继提出了光量子霍尔效应、光自旋量子霍尔效应和光拓扑绝缘体等。而对于声子而言,如空气声,因为它是偏振为零的纵波,所以要想实现空气声的拓扑态的设计极为困难,原因是:1)空气声的传播通常与外加磁场无关,无法实现类似磁光光子晶体中的光拓扑态。迄今为止,仅有理论提出引入环形气流产生有效“规度场”来实现空气声的量子霍尔效应[X.
Ni et al., New J. of Phys. 17, 053016
]的设计,但由于动态调制带来的不稳定性和噪声使得其在实验上难于实现[Q.
Wang et al., Sci. Rep. 5, 10880
空气声是纵波,无法像光拓扑绝缘体那样利用其偏振特性构造一对满足赝时间反演对称的态[C.
He et al., Proc. Natl. Acad. Sci. U.S.A. 113, 4924 ]。

这种单向光纤是基于近些年拓扑光子学的进展和外尔材料的发现设计出的一种拓扑波导。其原理是使用拓扑光子带隙材料将正反传输通道在三维空间中分开。团队通过螺旋调制外尔光子晶体,耦合并湮灭了外尔点,得到了这样的三维拓扑带隙材料,分开了正反传播的光子通道。对光子晶体的调制分为两个部分,其中空间调制是通过周期性调节结构占空比完成的,而螺旋调制则是在空间拉出了一条拓扑线缺陷,其位置就是单向光纤的导光区域。这种拓扑单向光纤的导光方向和模式数量由螺旋调制的方向和频率唯一确定,在数值上等于体系的拓扑不变量。与二维拓扑光子晶体边缘的单向边缘态(不变量是二维空间的第一陈数)的拓扑原理不同,单向光纤的拓扑不变量是四维参量空间的第二陈数,这个四维空间由三维空间变量加螺旋调制的角度所组成。

#变换光学带来的无穷魅力

图片 1

图中的仿真是对本体系直接求解麦克斯韦方程的结果,其中清晰地体现了单向传播模式,这一方案原则上可以在任意频段上实现。依据当前实验条件,在微波频段的实验实现最为便利,太赫兹频率以上的实验还有待新型磁光材料的开发。研究团队的这一理论工作在近期可以启发和促进单向和拓扑光纤的研究。从长期来看,随着材料科学和工艺水平的发展,简化设计后的单向光纤可能会有一系列潜在应用远景,比如光纤隔离器。

变换光学的基本原理是根据麦克斯韦方程的空间不变性。讲得浅显一点就是,改变我们所处的物理空间,保持电磁波的空间不变

图-1
声拓扑绝缘体示意图。双重狄拉克点附近能带反转机制。投影能带和边界态。

上述工作得到科技部重点研发计划和国家自然科学基金委的支持,以Topological
one-way fiber of second Chern number
为题发表于《自然-通讯》(Nature
Communications
9, 5384 。

比如隐身衣,从电磁波的角度来看,它所处的空间是没有变化的,所以它感觉不到变换前后的差别,所以它就不能分辨有没有物体在隐身衣之内。但是从我们的空间来看,变换前后的空间是完全不一样的,变换后,空间中有一个”洞“,这个“洞”就可以隐藏物体。

基于南京大学在人工微结构物理和材料(如声子晶体和光子晶体)方面研究的长期积累,该团队提出并在实验上验证了基于声子晶体偶然简并的双重狄拉克点附近能带反转构造声拓扑绝缘体的新机制。其基本原理是:在六角晶格声子晶体中,由于C6V对称性,使其具有两个二维不可约表示,它为构造四个简并的赝自旋态提供了基础。随着占空比的连续降低,可以实现布里渊区中心两个两重简并的能带从打开—闭合—再打开的过程。经历这个过程后,声子晶体能带实现了反转,从而实现了声的拓扑绝缘体。在这个机制中,利用两个偶然简并的Bloch态之间的杂化形成了纵声波的赝自旋向上和赝自旋向下,而C6V对称性可保证这对具有赝自旋的声子Bloch态满足类似费米子时间反演对称性。利用声拓扑绝缘体边界构成的拓扑边界态具有背散射抑制的能力,实验证明,在拓扑波导中加入空穴、无序和弯曲等缺陷,声波均可无背散射的通过,即具有声传播的鲁棒性,而常规波导则有强烈的反射。同时,他们巧妙地构造了一种“x”型的分路器模型[C.
He et al. Appl. Phys. Lett. 96, 111111
],使得赝自旋向上和赝自旋向下的声波具有完全不同的入口和出口通道,因而在空间上分离出向上和向下的两类声子。这一异质结构首次实现了在不需要激发和制备出单一声赝自旋(通常情况下很困难,特别是在不清楚自旋态状况的情况下)的情况下,验证并实现声的自旋量子霍尔效应的方案:即声赝自旋向下逆时针单向传播而自旋向下则顺时针单向传播。

图片 2

从数学上来说,变换前后,在隐身衣外面的麦克斯韦方程的解释一致。这并没有违背唯一性定理,因为唯一性定理描述的是各项同性介质的情况。而隐身衣的构成恰好是各向异性介质。

图片 3

图:传统光纤和单向光纤的对比
光纤中,电磁波遇到金属球后具有强烈的背向散射,信号由一个点源激发
单向光纤没有背向散射,信号可以完美绕过一切无吸收障碍物。图中磁性光子晶体结构由灰色表示,为了清楚地展示电场在光纤内部的传播,图中移去了四分之一的光纤结构。

隐身衣应该算是变换光学带来的最有意思的东西。第一次从数学上证明了隐身衣的可能性。当然还有其他的应用。

图-2 声拓扑和常规波导对比样品照片。拓扑波导透射谱。规波导透射谱。

隐身衣:

图片 4

图片 5

图-3 声自旋量子霍尔效应样品照片。声赝自旋-透射谱。声赝自旋+透射谱。

注意电磁波绕过了一个物体,好像这个物体对于它不存在一样。

这个工作的重要意义在于:1)首次提出并在实验上实现了声拓扑绝缘体,该模型结构简单、易于构造,可望应用于声传播调控和降噪隔声等领域;2)验证了一种利用人工带隙材料中偶然简并Bloch态,为自旋为0的玻色子构造具有满足费米子时间反演对称性的赝自旋态,从而实现玻色子拓扑绝缘体的新原理。3)提出并实现了一种利用量子自旋霍尔效应实现声学分路器的原型器件。

电磁波聚集器:

何程博士是论文的第一作者,卢明辉、刘晓平和陈延峰教授为共同通讯作者。倪旭博士,博士研究生葛浩,孙晓晨以及陈延彬副教授参与了这个课题的研究。研究得到了科技部重大研究计划、国家自然科学基金委项目、中组部青年千人计划、江苏省杰出青年基金等项目的资助。

图片 6

(现代工程与应用科学学院 科学技术处)

半径为c的圆圈内的电磁波都聚集在半径为a的圆圈内。注意外面的电磁波不受影响。

电磁波转向器:

图片 7

半径为a的圆圈内的场旋转了90°。注意外面的电磁波不受影响。

超散射

图片 8

在星星外面罩一个”面包圈“,使它看上去放大了几倍。注意是360°无死角放大,跟放大镜不一样。

看不见的波导

图片 9

弯曲波导

图片 10

光学黑洞

顾名思义,所有的光在遇到这个器件的时候,都有去无回。

光学黑洞实际上是用电磁材料来控制电磁波的路径,来模拟光掉进黑洞时的路径变化。从这个角度来说还是挺有意思的。

图片 11

还有很多别的应用,我就不列举了。通过变换光学可以自由的操作电磁波,这是跟人们以往的想法是不一样。

#电磁波通过一个很小的波导隧穿过去

图片 12

比如这样,电磁波照理来说在经过一个很小的通道时大部分能量会反射回去。但是在这个窄道里填充介电常数为零的介质后,电磁波竟然全部隧穿过来了。这里涉及到折射率为零的材料,电磁波在狭窄的波导里面,以无穷的相速度传播。

#超透镜

相关文章