图片 16

马克斯Compute Studio升高UDF和MapReduce开荒体验,maxcomputemapreduce

原标题:通过简单瘦身,解决Dataworks 10M文件限制问题

摘要:大数据计算服务(MaxCompute)的功能详解和使用心得

MaxCompute Studio提升UDF和MapReduce开发体验,maxcomputemapreduce

UDF全称User Defined
Function,即用户自定义函数。MaxCompute提供了很多内建函数来满足用户的计算需求,同时用户还可以创建自定义函数来满足定制的计算需求。用户能扩展的UDF有三种:UDF(User
Defined Scalar Function),UDTF(User Defined Table Valued
Function)和UDAF(User Defined Aggregation Function)。

同时,MaxCompute也提供了MapReduce编程接口,用户可以使用MapReduce提供的接口(Java
API)编写MapReduce程序处理MaxCompute中的数据。

通过MaxCompute
Studio提供的端到端的支持,用户能快速开始和熟悉开发自己的UDF和MapReduce,提高效率。下面我们就以一个例子来介绍如何使用Studio来开发自己的UDF:

摘要:
用户在DataWorks上执行MapReduce作业的时候,文件大于10M的JAR和资源文件不能上传到Dataworks,导致无法使用调度去定期执行MapReduce作业。
解决方案: jar -resources test_mr.

点此查看原文:http://click.aliyun.com/m/41384/

创建MaxCompute Java Module

首先,你得在intellij中创建一个用于开发MaxCompute
Java程序的module。具体的,File | new | module … module类型为MaxCompute
Java,配置Java JDK和MaxCompute
console的安装路径,点击next,输入module名,点击finish。

这里配置console的目的主要有两个:

  • 编写UDF和MR需要依赖MaxCompute框架的相关jar,而这些jar在console的lib目录均存在,studio能帮您将这些lib自动导入到module的依赖库中。

  • studio能集成console,一些动作通过console操作将十分方便。

图片 1

至此,一个能开发MaxCompute
java程序的module已建立,如下图的jDev。主要目录包括:

  • src(用户开发UDF|MR程序的源码目录)
  • examples(示例代码目录,包括单测示例,用户可参考这里的例子开发自己的程序或编写单测)
  • warehouse(本地运行需要的schema和data)

图片 2

用户在DataWorks上执行MapReduce作业的时候,文件大于10M的JAR和资源文件不能上传到Dataworks,导致无法使用调度去定期执行MapReduce作业。

前言

创建UDF

假设我们要实现的UDF需求是将字符串转换为小写(内建函数TOLOWER已实现该逻辑,这里我们只是通过这个简单的需求来示例如何通过studio开发UDF)。studio提供了UDF|UDAF|UDTF|Mapper|Reducer|Driver的模板,这样用户只需要编写自己的业务代码,而框架代码会由模板自动填充。

    1. 在src目录右键 new | MaxCompute Java

图片 3

    1. 输入类名,如myudf.MyLower,选择类型,这里我们选择UDF,点击OK。

图片 4

  • 3.
    模板已自动填充框架代码,我们只需要编写将字符串转换成小写的函数代码即可。

图片 5

解决方案:

MapReduce已经有文档,用户可以参考文档使用。本文是在文档的基础上做一些类似注解及细节解释上的工作。

测试UDF

UDF或MR开发好后,下一步就是要测试自己的代码,看是否符合预期。studio提供两种测试方式:

第一步:大于10M的resources通过MaxCompute CLI客户端上传,

功能介绍

单元测试

依赖于MaxCompute提供的Local
Run框架,您只需要像写普通的单测那样提供输入数据,断言输出就能方便的测试你自己的UDF或MR。在examples目录下会有各种类型的单测实例,可参考例子编写自己的unit
test。这里我们新建一个MyLowerTest的测试类,用于测试我们的MyLower:

图片 6

客户端下载地址:

MapReduce

sample数据测试

很多用户的需求是能sample部分线上表的数据到本机来测试,而这studio也提供了支持。在editor中UDF类MyLower.java上右键,点击”运行”菜单,弹出run
configuration对话框,配置MaxCompute
project,table和column,这里我们想将hy_test表的name字段转换为小写:

图片 7

点击OK后,studio会先通过tunnel自动下载表的sample数据到本地warehouse(如图中高亮的data文件),接着读取指定列的数据并本地运行UDF,用户可以在控制台看到日志输出和结果打印:

图片 8

客户端配置AK、EndPoint:

图片 9

发布UDF

好了,我们的MyLower.java测试通过了,接下来我们要将其打包成jar资源(这一步可以通过IDE打包,参考用户手册)上传到MaxComptute服务端上:

    1. 在MaxCompute菜单选择Add Resource菜单项:

图片 10

    1. 选择要上传到哪个MaxCompute
      project上,jar包路径,要注册的资源名,以及当资源或函数已存在时是否强制更新,然后点击OK。

图片 11

  • 3.
    jar包上传成功后,接下来就可以注册UDF了,在MaxCompute菜单选择Create
    Function菜单项。

图片 12

  • 4.
    选择需要使用的资源jar,选择主类(studio会自动解析资源jar中包含的主类供用户选择),输入函数名,然后点击OK。

图片 13

add jar C:\test_mr\test_mr.jar -f;//添加资源

说起MapReduce就少不了WordCount,我特别喜欢文档里的这个图片。

生产使用

上传成功的jar资源和注册成功的function(在Project
Explorer相应project下的Resources和Functions节点中就能及时看到,双击也能显示反编译的源码)就能够实际生产使用了。我们打开studio的sql
editor,就能愉快的使用我们刚写好的mylower函数,语法高亮,函数签名显示都不在话下:

图片 14

第二步:目前通过MaxCompute
CLI上传的资源,在Dataworks左侧资源列表是找不到的,只能通过list
resources查看确认资源;

比如有一张很大的表。表里有个String字段记录的是用空格分割开单词。最后需要统计所有记录中,每个单词出现的次数是多少。那整体的计算流程是

MapReduce

studio对MapReduce的开发流程支持与开发UDF基本类似,主要区别有:

  • MapReduce程序是作用于整张表的,而且输入输出表在Driver中已指定,因此如果使用sample数据测试的话在run
    configuration里只需要指定project即可。

  • MapReduce开发好后,只需要打包成jar上传资源即可,没有注册这一步。

  • 对于MapReduce,如果想在生产实际运行,可以通过studio无缝集成的console来完成。具体的,在Project
    Explorer Window的project上右键,选择Open in
    Console,然后在console命令行中输入类似如下的命令:
    jar -libjars wordcount.jar -classpath D:\odps\clt\wordcount.jar
    com.aliyun.odps.examples.mr.WordCount wc_in wc_out;

list resources;//查看资源

输入阶段:根据工作量,生成几个Mapper,把这些表的数据分配给这些Mapper。每个Mapper分配到表里的一部分记录。

关于MaxCompute

欢迎加入MaxCompute钉钉群讨论
图片 15

阅读原文请点击

Studio提升UDF和MapReduce开发体验,maxcomputemapreduce UDF全称User
Defined
Function,即用户自定义函数。MaxCompute提供了很多内建函数来满足用…

第三步:瘦身Jar,因为Dataworks执行MR作业的时候,一定要本地执行,所以保留个main就可以;

Map阶段:每个Mapper针对每条数据,解析里面的字符串,用空格切开字符串,得到一组单词。针对其中每个单词,写一条记录

图片 16

Shuffle阶段-合并排序:也是发生在Mapper上。会先对数据进行排序。比如WordCount的例子,会根据单词进行排序。排序后的合并,又称Combiner阶段,因为前面已经根据单词排序过了,相同的单词都是连在一起的。那可以把2个相邻的合并成1个。Combiner可以减少在后续Reduce端的计算量,也可以减少Mapper往Reducer的数据传输的工作量。

通过上述方法,我们可以在Dataworks上跑大于10M的MR作业。

Shuffle阶段-分配Reducer:把Mapper输出的单词分发给Reducer。Reducer拿到数据后,再做一次排序。因为Reducer拿到的数据已经在Mapper里已经是排序过的了,所以这里的排序只是针对排序过的数据做合并排序。

作者:隐林

Reduce阶段:Reducer拿前面已经排序好的输入,相同的单词的所有输入进入同一个Redue循环,在循环里,做个数的累加。

​本文为云栖社区原创内容,未经允许不得转载。返回搜狐,查看更多

输出阶段:输出Reduce的计算结果,写入到表里或者返回给客户端。

责任编辑:

拓展MapReduce

如果Reduce后面还需要做进一步的Reduce计算,可以用拓展MapReduce模型(简称MRR)。MRR其实就是Reduce阶段结束后,不直接输出结果,而是再次经过Shuffle后接另外一个Reduce。

Q:如何实现M->R->M->R这种逻辑呢

A:在Reduce代码里直接嵌套上Map的逻辑就可以了,把第二个M的工作在前一个R里完成,而不是作为计算引擎调度层面上的一个单独步骤,比如

reduce(){

    …

    map();

}

快速开始

运行环境

工欲善其事,必先利其器。MR的开发提供了基于IDEA和Eclipse的插件。其中比较推荐用IDEA的插件,因为IDEA我们还在持续做迭代,而Eclipse已经停止做更新了。而且IDEA的功能也比较丰富。

具体的插件的安装方法步骤可以参考文档,本文不在赘言。

另外后续还需要用到客户端,可以参考文档安装。

后续为了更加清楚地说明问题,我会尽可能地在客户端上操作,而不用IDEA里已经集成的方法。

线上运行

以WordCount为例,文档可以参考这里

步骤为

做数据准备,包括创建表和使用Tunnel命令行工具导入数据

将代码拷贝到IDE里,编译打包成mapreduce-examples.jar

在odpscmd里执行add jar命令:

add jar /JarPath/mapreduce-examples.jar -f;